Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Naokazu Yoshikawa, ${ }^{\text {a* }}$ Jun
Sakamoto, ${ }^{\text {b }}$ Nobuko Kanehisa, ${ }^{\text {c }}$
Yasushi Kai, ${ }^{\text {c }}$ Takeko MatsumuraInoue, ${ }^{d}$ Hiroshi Takashima ${ }^{\text {a }}$ and Keiichi Tsukahara ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Science Nara Women's University, Nara, 630-8506, Japan, ${ }^{\mathbf{b}}$ Department of Chemistry, Nara University of Education, Nara, 630-8528, Japan, ${ }^{\text {c }}$ Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamada-Oka 2-1, Suita, Osaka, 565-0871, Japan, and ${ }^{\mathbf{d}}$ Minerva Light Laboratory, Hikaridai 1-7, Seikacyo, Sourakugun, Kyoto, 630-8528, Japan

Correspondence e-mail:
naokazuu@dg.mbn.or.jp

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.014 \AA$
R factor $=0.071$
$w R$ factor $=0.156$
Data-to-parameter ratio $=16.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(4,4'-Dimethyl-2,2'-bipyridine)chloro(2,2':6', $\mathbf{2}^{\prime \prime}$-terpyridine)-iridium(III) hexafluorophosphate

In the title compound, $\left[\operatorname{IrCl}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}$, the ligand environment about the Ir atom is distorted octahedral. The $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (terpy) ligand is coordinated in a meridional fashion, the $4,4^{\prime}$-dimethyl- $2,2^{\prime}$-bipyridine (dmbpy) ligand coordinated in a cis fashion and the Cl atom is trans to one of the dmbpy N atoms. $\mathrm{Ir}-\mathrm{N}$ bond distances are 1.971 (5) -2.065 (6) \AA and the $\mathrm{Ir}-\mathrm{Cl}$ distance is 2.357 (2) \AA.

Comment

Extensive studies of the photophysics of octahedral [$4 d^{6}$] and $\left[5 d^{6}\right]$ complexes have attracted a lot of attention with regard to their photochemical applications, on account of their longlived excited states and good photoluminescence efficiencies (Volgler \& Brewer, 1996). The studies have been focused mainly on the photophysical properties of octahedral diimine $\mathrm{Ru}^{\text {III }}$ and $\mathrm{Os}^{\text {III }}$ complexes with ligands such as $2,2^{\prime}$-bipyridine or 1,10-phenanthroline. Recently, a number of groups involving tris-chelate complexes of Rh and Ir with diimine and cyclometalated ligands have been investigated. Tris-chelate complexes of Rh and Ir show excited-state lifetimes in the microsecond region. The Ir complexes have intensive phosphorescence states at room temperature, while the Rh complexes give measurable emission states only at low temperatures. The stronger spin-orbit coupling mixes singlet and triplet excited states for Ir , leading to efficient phosphorescence (Yoshikawa \& Matsumura-Inoue, 2003). From a structural point of view, the terpyridine ligand is superior to the bidentate one. However, along with this structural advantage, terpyridine complexes have the serious drawback of a relatively short-lived ${ }^{3}$ MLCT with weak emitters. For the design of $\mathrm{Ir}^{\mathrm{III}}$ terpyridine complexes with intense emission, we aimed to obtain monoterpyridine complexes using the ancillary ligands. As a first step toward this goal, we tried to synthesize several $\mathrm{Ir}^{\mathrm{III}}$ complexes with matrixes of a terpyridine ligand and a polypyridine ligand because these ligands, with both electron-donor and/or electron-acceptor substituents, resulted in a decrease of the energy of the ${ }^{3}$ MLCT state. In this paper, the structure of the title compound, (I), is reported.

Received 20 August 2003
Accepted 29 August 2003 Online 5 September 2003

Figure 1
Molecular structure of (I), showing 50% probability displacement ellipsoids.

The ligand environment about the Ir atom is distorted octahedral; the terpy ligand is coordinated in a meridional fashion, the dmbpy ligand is coordinated in a cis fashion and the Cl atom is trans to one of the dmbpy N atoms (Fig. 1). The largest distortion of the octahedral geometry is due to the geometrical constraints of the terpy ligand, which exhibits small $\mathrm{N}-\mathrm{Ir}-\mathrm{N}$ chelate angles [80.5 (3) ${ }^{\circ}$ and $\left.81.2(2)^{\circ}\right]$ and an $\mathrm{Ir}-\mathrm{N}$ distance for the central pyridyl ring fragment of 1.971 (5) Å, shorter than those for the outer two (Table 1). These values are in good agreement with those for other $\mathrm{Ir}^{\text {III }}$ and $\mathrm{Ru}^{\mathrm{II}}$ complexes with the terpy ligand (Spek et al., 1994; Collin et al., 1999). The $\operatorname{Ir}-\mathrm{N}$ distances of 2.057 (7)2.065 (6) A for the dmbpy ligand and 2.036 (8) -2.062 (7) A for the two terminal terpy ring fragments are in the range found for other $\mathrm{Ru}^{\mathrm{II}}$ complexes with polypirdyl ligands (Spek et al., 1994; Mosher et al., 2001). The two $\operatorname{Ir}-\mathrm{N}$ (dmbpy) bond lengths are not significantly different, although N5 is trans to the sterically hindered atom N 2 , and N 4 is trans to the chloride ion. Similarly, no trans influence associated with the opposite N atom of the terpy ligand has been observed in other mixedligand complexes involving terpy and $\mathrm{Ru}^{\mathrm{II}}$ (Spek et al., 1994).

Experimental

The complex was prepared by a sequential procedure involving ligand replacement. $\left(\mathrm{NH}_{4}\right)_{3}\left[\mathrm{IrCl}_{6}\right](0.5 \mathrm{mmol})$ and $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine $(0.5 \mathrm{mmol})$ were mixed in ethylene glycol $(15 \mathrm{ml})$. The suspended mixture was refluxed for 5 min in a microwave oven under a purging nitrogen atmosphere. 4,4'-Dimethyl-2,2'-bipyridine $(0.5 \mathrm{mmol})$ was added to the refluxing brown solution for 10 min . The mixture was then cooled to room temperature. A saturated aqueous solution of $\mathrm{KPF}_{6}(20 \mathrm{ml})$ was added to provide a counter ion, and a yellow product began to precipitate; this was collected by vacuum
filtration. Yellow single crystals were obtained by recrystallization from acetonitrile and water.

Crystal data

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

Ir1-Cl1	$2.357(2)$	Ir1-N3	$2.062(7)$
Ir1-N1	$2.036(8)$	Ir1-N4	$2.057(7)$
Ir1-N2	$1.971(5)$	Ir1-N5	$2.065(6)$
Cl1-Ir1-N1	$90.9(2)$	$\mathrm{N} 1-\mathrm{Ir} 1-\mathrm{N} 5$	$98.1(3)$
$\mathrm{C} 1-\mathrm{Ir} 1-\mathrm{N} 2$	$88.8(2)$	$\mathrm{N} 2-\mathrm{Ir} 1-\mathrm{N} 3$	$81.2(2)$
$\mathrm{C} 1-\mathrm{Ir} 1-\mathrm{N} 3$	$87.9(2)$	$\mathrm{N} 2-\mathrm{Ir} 1-\mathrm{N} 4$	$95.8(2)$
$\mathrm{Cl} 1-\mathrm{Ir} 1-\mathrm{N} 4$	$175.2(2)$	$\mathrm{N} 2-\mathrm{Ir} 1-\mathrm{N} 5$	$175.2(3)$
$\mathrm{Cl} 1-\mathrm{Ir} 1-\mathrm{N} 5$	$95.8(2)$	$\mathrm{N} 3-\mathrm{Ir} 1-\mathrm{N} 4$	$91.4(3)$
N1-Ir1-N2	$80.5(3)$	$\mathrm{N} 3-\mathrm{Ir} 1-\mathrm{N} 5$	$100.3(3)$
$\mathrm{N} 1-\mathrm{Ir} 1-\mathrm{N} 3$	$161.6(2)$	$\mathrm{N} 4-\mathrm{Ir} 1-\mathrm{N} 5$	$79.6(2)$
$\mathrm{N} 1-\mathrm{Ir} 1-\mathrm{N} 4$	$91.3(3)$		

All the H atoms bonded to carbon were placed at calculated positions, and fixed $(\mathrm{C}-\mathrm{H}=0.95-0.97 \AA)$. The maximum and minimum residual-density peaks are at 2.17 and $1.06 \AA$ from atoms Ir and N3, respectively. PLATON/SQUEEZE (Spek, 2002) indicated large voids in the structure, maximum volume of $420 \AA^{3}$, which may accommodate water and/or acetonitrile molecules. However, we could not detect any residual density peaks in the voids.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: TEXSAN (Molecular Structure Corporation, 2000); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

References

Altomare, A., Cascarano, G.,Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Collin, J. P., Dixon, I. P. M., Sauvage, J. P., Gareth Williams, J. A., Barigelletti, F. \& Flamigni, L. (1999). J. Am. Chem. Soc. 121, 5009-5016.

metal-organic papers

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (2000). TEXSAN, Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.
Mosher, P. J., Yap, G. P. A. \& Crutchley, R. J. (2001). Inorg. Chem. 40, 550-553.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2002). PLATON. Utrecht University, The Netherlands. Spek, A. L., Gerli, A. \& Reeduk, J. (1994). Acta Cryst. C50, m394-m397. Volgler, L. M. \& Brewer, K. J. (1996). Inorg. Chem. 35, 818-824. Yoshikawa, N. \& Matsumura-Inoue, T. (2003). Anal. Sci. pp. 761-765.

